برچسب: دارو

7 ماه قبل - 162 بازدید

وب‌سایت رسمی دانشگاه کالیفرنیا سن‌دیگو گزارش داده است که یک پلتفرم هوش مصنوعی که در این ابداع شده است، در آزمایش‌ها توانست ۳۲ داروی جدید را برای هدف قرار دادن سرطان تولید کند. دانشمندان دانشگاه کالیفرنیا سن‌دیگو یک الگوریتم یادگیری ماشینی را برای شبیه‌سازی شیمی زمان‌بر مراحل اولیه کشف دارو توسعه داده‌اند که می‌تواند این فرآیند را به طور قابل‌توجهی ساده کند و امکان ارائه دادن درمان‌های جدید را فراهم آورد. در ادامه آمده است که شناسایی داروهای جدید برای بهبودی بیشتر معمولا شامل هزاران آزمایش فردی است اما پلتفرم جدید هوش مصنوعی می‌تواند نتایج یکسان را در کسری از زمان ارائه دهد. دانشمندان از این پلتفرم جدید برای تولید ۳۲ داروی جدید سرطان استفاده کردند. این فناوری، بخشی از یک روند جدید اما رو به ‌رشد در علم داروسازی برای استفاده کردن از هوش مصنوعی به منظور بهبود کشف و توسعه دارو است. تری آیدکر، استاد گروه پزشکی در دانشکده پزشکی دانشگاه کالیفرنیا سن‌دیگو و پژوهشگر ارشد این پروژه گفت: چند سال پیش، هوش مصنوعی یک کلمه کثیف در صنعت داروسازی بود اما اکنون این روند قطعا برعکس است زیرا استارت‌آپ‌های زیست‌فناوری بدون پرداختن به هوش مصنوعی برای جمع‌آوری سرمایه در کسب‌وکار خود مشکل پیدا می‌کنند. کشف دارو با هدایت هوش مصنوعی، به یک حوزه بسیار فعال در داروسازی تبدیل شده است اما بر خلاف روش‌هایی که در شرکت‌ها توسعه می‌یابند، ما فناوری خود را به صورت منبع باز و در دسترس برای هر کسی که می‌خواهد از آن استفاده کند، می‌سازیم. پلتفرم جدید که «POLYGON» نام دارد، در میان پلتفرم‌های هوش مصنوعی کشف دارو منحصربه‌فرد است، زیرا می‌تواند مولکول‌هایی را با اهداف متعدد شناسایی کند. این در حالی است که پروتکل‌های موجود کشف دارو در حال حاضر درمان‌های تک‌هدف را در اولویت قرار می‌دهند. داروهای چندهدف به دلیل پتانسیل خود برای ارائه مزایای مشابه با درمان ترکیبی و در عین حال، عوارض جانبی کمتر مورد توجه پزشکان و دانشمندان هستند. آیدکر گفت: یافتن و توسعه یک داروی جدید سال‌ها طول می‌کشد و میلیون‌ها دلار هزینه دارد؛ به ویژه اگر یک داروی چندهدف باشد. معدود داروهای چندهدفی که ما داریم، تا حد زیادی به طور تصادفی کشف شده‌اند اما این فناوری جدید می‌تواند شانس را از معادله حذف کند و آغازگر نسل جدیدی از پزشکی دقیق باشد. دانشمندان، POLYGON را روی یک پایگاه داده متشکل از بیش از یک میلیون مولکول فعال زیستی شناخته‌شده آموزش دادند که حاوی اطلاعات دقیق درباره خواص شیمیایی و تعاملات شناخته‌شده با اهداف پروتئینی است. الگوریتم POLYGON با یادگیری از الگوهای موجود در پایگاه داده می‌تواند فرمول‌های شیمیایی اصلی را برای داروهای جدید تولید کند که احتمالا دارای ویژگی‌هایی مانند توانایی مهار پروتئین‌های خاص هستند. آیدکر ادامه داد: درست مانند هوش مصنوعی که اکنون در تولید نقاشی‌ها و تصاویر اصلی مانند ایجاد تصاویر چهره انسان براساس ویژگی‌های دلخواه مانند سن یا جنسیت بسیار خوب است، POLYGON نیز می‌تواند ترکیبات مولکولی اصلی را براساس خواص شیمیایی مورد نظر تولید کند. در این مورد، به جای اینکه به هوش مصنوعی بگوییم می‌خواهیم چهره‌مان چند ساله باشد، به او می‌گوییم که می‌خواهیم داروی آینده ما با پروتئین‌های بیماری در تعامل قرار بگیرد. برای آزمایش کردن POLYGON، دانشمندان از آن برای تولید صدها دارو استفاده کردند که جفت‌های گوناگونی را از پروتئین‌های مرتبط با سرطان هدف قرار می‌دهند. از این میان، آنها ۳۲ مولکول را تولید کردند که قوی‌ترین تعاملات پیش‌بینی‌شده را با پروتئین‌های MEK1 و mTOR داشتند. این دو، پروتئین‌های سیگنال‌دهنده سلولی هستند که هدف امیدوارکننده‌ای برای درمان ترکیبی سرطان به شمار می‌روند. مهار هر دو پروتئین با هم برای از بین بردن سلول‌های سرطانی کافی است؛ حتی اگر مهار یکی از آنها به تنهایی انجام نشود. پژوهشگران دریافتند داروهایی که آنها تولید کرده‌اند، فعالیت قابل توجهی را در برابر MEK1 و mTOR دارند اما واکنش‌های خارج از هدف کمی را با سایر پروتئین‌ها نشان دادند. این نشان می‌دهد که یک یا چند داروی شناسایی‌شده توسط POLYGON می‌توانند هر دو پروتئین را به‌عنوان درمان سرطان هدف قرار دهند و فهرستی از گزینه‌ها را برای تنظیم دقیق توسط شیمی‌دان‌های انسانی ارائه کنند. ایدکر گفت: پس از دریافت داروها هنوز باید کارهای شیمیایی دیگری را انجام دهید تا آن گزینه‌های دارویی را به صورت یک درمان واحد و مؤثر درآورید. ما نمی‌توانیم و نباید سعی داشته باشیم تا تخصص انسانی را از روند کشف دارو حذف کنیم، بلکه باید چند مرحله از این فرآیند را کوتاه کنیم. به رغم این احتیاط، دانشمندان نسبت به قابلیت‌های هوش مصنوعی برای کشف دارو خوش‌بین هستند. آیدکر افزود: دیدن چگونگی اجرایی شدن این مفهوم در دهه آینده چه در دانشگاه و چه در بخش خصوصی بسیار هیجان‌انگیز خواهد بود. قابلیت‌های هوش مصنوعی عملا بی‌پایان هستند. این پژوهش در مجله «Nature Communications» به چاپ رسید.

ادامه مطلب


8 ماه قبل - 178 بازدید

ساینس دیلی در تازه‌ترین مورد گزارش داده است که روش نوآورانه پژوهشگران «دانشگاه تگزاس در آستین»، از هوش مصنوعی و حسگرهای زیستی استفاده می‌کند تا راه را برای توسعه سریع‌تر داروهایی مانند داروی آلزایمر هموار کند. گالانتامین (Galantamine) یک داروی رایج است که افراد مبتلا به بیماری آلزایمر و سایر انواع زوال عقل در سراسر جهان برای درمان علائم بیماری خود از آن استفاده می‌کنند. تولید ترکیبات فعال در آزمایشگاه در مقیاس مورد نیاز، از نظر تجاری ساده نیست. در آمده است که ماده مؤثر طی یک فرآیند زمان‌بر از گل نرگس استخراج می‌شود و عوامل غیرقابل پیش‌بینی مانند آب و هوا و عملکرد محصول می‌توانند بر عرضه و قیمت دارو تأثیر بگذارند. پژوهشگران دانشگاه تگزاس در آستین، سیستم‌هایی را از جمله یک سیستم هوش مصنوعی و حسگرهای زیستی درخشان برای مهار میکروب‌ها توسعه داده‌اند که می‌توانند مشکل تولید داروها را حل کنند. پژوهشگران در این پروژه، فرآیندی را با استفاده از باکتری‌های اصلاح‌شده ژنتیکی برای ایجاد پیش‌ساز شیمیایی گالانتامین به عنوان محصول جانبی متابولیسم سلولی طبیعی این میکروب ارائه داده‌اند. این باکتری‌ها طوری برنامه‌ریزی شده‌اند که غذا را به ترکیبات دارویی تبدیل کنند. اندرو الینگتون، استاد دانشگاه تگزاس در آستین و پژوهشگر ارشد این پروژه، گفت: هدف این است که در نهایت داروهایی از این دست را در مقادیر زیاد تخمیر کنیم. این روش، یک منبع قابل اعتماد را ایجاد می‌کند که هزینه تولید آن بسیار کمتر است، فصل رشد ندارد و تحت تاثیر خشکسالی یا سیل قرار نمی‌گیرد. دنی دیاز، پژوهشگر مقطع فوق دکتری دانشگاه تگزاس در آستین، یک سیستم هوش مصنوعی را به نام «MutComputeX» ابداع کرد که کلید این فرآیند است. این سیستم، نحوه جهش پروتئین‌ها را در باکتری‌ها برای بهبود کارآیی و دمای عملیاتی آنها به منظور به حداکثر رساندن تولید ماده شیمیایی دارویی مورد نیاز مشخص می‌کند. دیاز گفت: این سیستم به شناسایی جهش‌هایی کمک کرد که باکتری‌ها را در تولید مولکول مورد نظر کارآمدتر می‌کنند. در برخی موارد، سیستم تا سه برابر بیشتر از سیستم طبیعی موجود در گل نرگس کارآمد بود. فرآیند مهار میکروب‌ها برای تولید محصولات جانبی سودمند، چیز جدیدی نیست. برای مثال، باکتری‌ها به تولید پنیر و ماست کمک می‌کنند. تخمیر میکروبی در حال حاضر برای ساخت انواع خاصی از انسولین برای درمان دیابت مورد استفاده قرار می‌گیرد. هورمون‌ها و پروتئین‌های نوترکیب مورد استفاده در چندین دارو مانند داروهای خودایمنی و حتی واکسن‌ها نیز تحت این فرآیند ایجاد می‌شوند. استفاده از هوش مصنوعی در این فرآیند، نسبتا جدید است و آنچه را که با تخمیر میکروبی امکان‌پذیر می‌شود، گسترش می‌دهد. این گروه پژوهشی، باکتری «اشریشیا کلی»(E. coli) را برای تولید «4-O’Methyl-norbelladine» اصلاح ژنتیکی کردند که یک عنصر شیمیایی سازنده گالانتامین است. این مولکول در خانواده‌ای از ترکیبات استخراج‌شده از گل نرگس موجود است که کاربرد دارویی در درمان بیماری‌هایی مانند سرطان، عفونت‌های قارچی و عفونت‌های ویروسی دارند، اما استفاده از تخمیر میکروبی برای ایجاد یک ماده شیمیایی در این خانواده، یک کار جدید است. پژوهشگران یک حسگر زیستی فلورسنت را نیز ابداع کردند تا به سرعت نشان دهد کدام باکتری، مواد شیمیایی مورد نظر را تولید می‌کند و چه مقدار از آن را ارائه می‌دهد. هنگامی که حسگر زیستی با پروتئینی که به طور ویژه ساخته شده است، تماس پیدا می‌کند، به رنگ سبز می‌درخشد. سایمون دویلزنیتز، پژوهشگر ارشد این پروژه گفت: حسگر زیستی به ما امکان می‌دهد تا نمونه‌ها را در چند ثانیه آزمایش و تحلیل کنیم. همچنین، برنامه یادگیری ماشینی به ما امکان می‌دهد که به راحتی ترکیبات را از ده‌ها هزار مورد به ده‌ها مورد محدود کنیم. این دو در کنار هم، یک سیستم واقعا قوی را تشکیل می‌دهند. این پژوهش در مجله «Nature Communications» به چاپ رسید.

ادامه مطلب